Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Jascha Sohl-Dickstein¹, Eric Weiss², Niru Maheswaranathan³, Surya Ganguli³

¹ Google Brain, ² UC Berkeley, ³ Stanford University

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results
- Other projects: Training energy based models,
 Monte Carlo, deep learning theory

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results
- Other projects: Training energy based models,
 Monte Carlo, deep learning theory

Unknown features/labels

- Unknown features/labels
 - Novel modalities

- Unknown features/labels
 - Novel modalities

[Trans Biomed Eng, 2015]

- Unknown features/labels
 - Novel modalities

- Unknown features/labels
 - Novel modalities
 - Exploratory data analysis

- Unknown features/labels
 - Novel modalities
 - Exploratory data analysis

7 exemplar multiunits responding to 40 repeated trials of natural video in cat V1

[PLoS Comp Bio 2014] [Neuron 2013]

- Unknown features/labels
 - Novel modalities
 - Exploratory data analysis

- Unknown features/labels
 - Novel modalities
 - Exploratory data analysis
- Expensive labels

- Unknown features/labels
 - Novel modalities
 - Exploratory data analysis
- Expensive labels

Coronal breast CT

[SPIE 2009] [Med Phys 2014]

- Unknown features/labels
 - Novel modalities
 - Exploratory data analysis
- Expensive labels

- Unknown features/labels
 - Novel modalities
 - Exploratory data analysis
- Expensive labels
- Unpredictable tasks / one shot learning

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results
- Other projects: Training energy based models,
 Monte Carlo, deep learning theory

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
 - Destroy structure in data
 - Carefully characterize the destruction
 - Learn how to reverse time
- Diffusion probabilistic model: Derivation and experimental results
- Other projects: Training energy based models, Monte Carlo, deep learning theory

Dye density represents probability density

- Dye density represents probability density
- Goal: Learn structure of probability density

- Dye density represents probability density
- Goal: Learn structure of probability density
- Observation: Diffusion destroys structure

- Dye density represents probability density
- Goal: Learn structure of probability density
- Observation: Diffusion destroys structure

- Dye density represents probability density
- Goal: Learn structure of probability density
- Observation: Diffusion destroys structure

Data distribution

What if we could reverse time?

What if we could reverse time?

What if we could reverse time?

Data distribution

- What if we could reverse time?
- Recover data distribution by starting from uniform distribution and running dynamics backwards

Data distribution

- What if we could reverse time?
- Recover data distribution by starting from uniform distribution and running dynamics backwards

Data distribution

© Rutger Saly

- Microscopic view
- Brownian motion

© Rutger Saly

- Microscopic view
- Brownian motion

© Rutger Saly

- Microscopic view
- Brownian motion

© Rutger Saly

- Microscopic view
- Brownian motion

© Rutger Saly

- Microscopic view
- Brownian motion
- Position updates are small Gaussians

© Rutger Saly

- Microscopic view
- Brownian motion
- Position updates are small Gaussians

© Rutger Saly

- Microscopic view
- Brownian motion
- Position updates are small Gaussians

Observation 2: Microscopic Diffusion is Time Reversible

© Rutger Saly

- Microscopic view
- Brownian motion
- Position updates are small Gaussians
 - Both forwards and backwards in time

Destroy all structure in data distribution using diffusion process

- Destroy all structure in data distribution using diffusion process
- Learn reversal of diffusion process
 - Estimate function for mean and covariance of each step in the reverse diffusion process (binomial rate for binary data)

- Destroy all structure in data distribution using diffusion process
- Learn reversal of diffusion process
 - Estimate function for mean and covariance of each step in the reverse diffusion process (binomial rate for binary data)
- Reverse diffusion process is the model of the data

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results
 - Algorithm
 - Deep convolutional network: Universal function approximator
 - Multiplying distributions: Inputation, denoising, computing posteriors
- Other projects: Training energy based models, Monte Carlo, deep learning theory

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results
 - Algorithm
 - Deep convolutional network: Universal function approximator
 - Multiplying distributions: Inputation, denoising, computing posteriors
- Other projects: Training energy based models, Monte Carlo, deep learning theory

Data distribution

$$q\left(\mathbf{x}^{(0)}\right)$$

Data distribution

Forward diffusion

$$q\left(\mathbf{x}^{(0)}\right)$$

$$q\left(\mathbf{x}^{(t)}|\mathbf{x}^{(t-1)}\right) = \mathcal{N}\left(\mathbf{x}^{(t)};\mathbf{x}^{(t-1)}\sqrt{1-\beta_t},\mathbf{I}\beta_t\right)$$

Data distribution

Forward diffusion

$$q\left(\mathbf{x}^{(0)}\right)$$

$$q\left(\mathbf{x}^{(t)}|\mathbf{x}^{(t-1)}\right) = \mathcal{N}\left(\mathbf{x}^{(t)}; \mathbf{x}^{(t-1)}\sqrt{1-\beta_t}, \mathbf{I}\beta_t\right)$$

Decay towards origin

Data distribution

Forward diffusion

$$q\left(\mathbf{x}^{(0)}\right)$$

$$q\left(\mathbf{x}^{(t)}|\mathbf{x}^{(t-1)}\right) = \mathcal{N}\left(\mathbf{x}^{(t)}; \mathbf{x}^{(t-1)}\sqrt{1-\beta_t}, \mathbf{I}\beta_t\right)$$

Decay towards origin

Add small noise

Data distribution

Forward diffusion

Noise distribution

$$q\left(\mathbf{x}^{(0)}\right)$$

$$q\left(\mathbf{x}^{(T)}\right) \approx \mathcal{N}\left(\mathbf{x}^{(T)}; 0, \mathbf{I}\right)$$

$$q\left(\mathbf{x}^{(t)}|\mathbf{x}^{(t-1)}\right) = \mathcal{N}\left(\mathbf{x}^{(t)};\mathbf{x}^{(t-1)}\sqrt{1-\beta_t},\mathbf{I}\beta_t\right)$$

Decay towards origin

Add small noise

Forward Diffusion Process on Swiss Roll

- Start at data
- Run Gaussian diffusion until samples become Gaussian blob

Forward Diffusion Process on Swiss Roll

- Start at data
- Run Gaussian diffusion until samples become Gaussian blob

Noise distribution

$$p\left(\mathbf{x}^{(T)}\right) = \mathcal{N}\left(\mathbf{x}^{(T)}; 0, \mathbf{I}\right)$$

Reverse diffusion

Noise distribution

$$p\left(\mathbf{x}^{(T)}\right) = \mathcal{N}\left(\mathbf{x}^{(T)}; 0, \mathbf{I}\right)$$

$$p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right) = \mathcal{N}\left(\mathbf{x}^{(t-1)}; f_{\mu}\left(\mathbf{x}^{(t)}, t\right), f_{\Sigma}\left(\mathbf{x}^{(t)}, t\right)\right)$$

Reverse diffusion

Noise distribution

$$p\left(\mathbf{x}^{(T)}\right) = \mathcal{N}\left(\mathbf{x}^{(T)}; 0, \mathbf{I}\right)$$

$$p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right) = \mathcal{N}\left(\mathbf{x}^{(t-1)}; f_{\mu}\left(\mathbf{x}^{(t)}, t\right), f_{\Sigma}\left(\mathbf{x}^{(t)}, t\right)\right)$$

Learned drift and covariance functions

Data distribution

Reverse diffusion

Noise distribution

$$p\left(\mathbf{x}^{(0)}\right) \approx q\left(\mathbf{x}^{(0)}\right)$$

$$p\left(\mathbf{x}^{(T)}\right) = \mathcal{N}\left(\mathbf{x}^{(T)}; 0, \mathbf{I}\right)$$

$$p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right) = \mathcal{N}\left(\mathbf{x}^{(t-1)}; f_{\mu}\left(\mathbf{x}^{(t)}, t\right), f_{\Sigma}\left(\mathbf{x}^{(t)}, t\right)\right)$$

Learned drift and covariance functions

Learned Reverse Diffusion Process on Swiss Roll

- Start at Gaussian blob
- Run Gaussian diffusion until samples become data distribution

Learned Reverse Diffusion Process on Swiss Roll

- Start at Gaussian blob
- Run Gaussian diffusion until samples become data distribution

Summary of Forward and Reverse Diffusion on Swiss Roll

Summary of Forward and Reverse Diffusion on Swiss Roll

Summary of Forward and Reverse Diffusion on Swiss Roll

Training the Reverse Diffusion Process

Model probability

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} p\left(\mathbf{x}^{(0\cdots T)}\right)$$

Training the Reverse Diffusion Process

Model probability

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} p\left(\mathbf{x}^{(0\cdots T)}\right)$$

Annealed importance sampling / Jarzynski equality

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right) \frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right)}$$

Training the Reverse Diffusion Process

Model probability

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} p\left(\mathbf{x}^{(0\cdots T)}\right)$$

Annealed importance sampling / Jarzynski equality

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right) \frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right)}$$

Log Likelihood

$$L = \int d\mathbf{x}^{(0)} q\left(\mathbf{x}^{(0)}\right) \log \left[\int d\mathbf{x}^{(1\cdots T)} q\left(\mathbf{x}^{(1\cdots T)}\right) \frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)}\right)} \right]$$

Model probability

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} p\left(\mathbf{x}^{(0\cdots T)}\right)$$

Annealed importance sampling / Jarzynski equality

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right) \frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right)}$$

Log Likelihood

$$L = \int d\mathbf{x}^{(0)} q\left(\mathbf{x}^{(0)}\right) \log \left[\int d\mathbf{x}^{(1\cdots T)} q\left(\mathbf{x}^{(1\cdots T)}\right) \frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)}\right)} \right]$$

Jensen's inequality

$$L \ge \int d\mathbf{x}^{(0\cdots T)} q\left(\mathbf{x}^{(0\cdots T)}\right) \log \left| \frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)}|\mathbf{x}^{(0)}\right)} \right|$$

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right) \frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right)}$$

Log Likelihood

$$L = \int d\mathbf{x}^{(0)} q\left(\mathbf{x}^{(0)}\right) \log \left[\int d\mathbf{x}^{(1\cdots T)} q\left(\mathbf{x}^{(1\cdots T)}\right) \frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)}\right)} \right]$$

Jensen's inequality

$$L \ge \int d\mathbf{x}^{(0\cdots T)} q\left(\mathbf{x}^{(0\cdots T)}\right) \log \left[\frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)}|\mathbf{x}^{(0)}\right)}\right]$$

... algebra ...

$$L \ge -\sum_{t=2}^{T} \int d\mathbf{x}^{(0)} d\mathbf{x}^{(t)} q\left(\mathbf{x}^{(0)}, \mathbf{x}^{(t)}\right) D_{KL} \left(q\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}, \mathbf{x}^{(0)}\right) \middle| \left| p\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}\right)\right) + \text{const}$$

$$L \ge -\sum_{t=2}^{T} \int d\mathbf{x}^{(0)} d\mathbf{x}^{(t)} q\left(\mathbf{x}^{(0)}, \mathbf{x}^{(t)}\right) D_{KL} \left(q\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}, \mathbf{x}^{(0)}\right) \middle| \left| p\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}\right)\right) + \text{const}$$

$$L \ge -\sum_{t=2}^{T} \int d\mathbf{x}^{(0)} d\mathbf{x}^{(t)} q\left(\mathbf{x}^{(0)}, \mathbf{x}^{(t)}\right) D_{KL} \left(q\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}, \mathbf{x}^{(0)}\right) \middle| p\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}\right)\right) + \text{const}$$

Gaussian

$$L \ge -\sum_{t=2}^{T} \int d\mathbf{x}^{(0)} d\mathbf{x}^{(t)} q\left(\mathbf{x}^{(0)}, \mathbf{x}^{(t)}\right) D_{KL}\left(q\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}, \mathbf{x}^{(0)}\right) \middle| \left| p\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}\right)\right)$$

+ const

Gaussian

$$L \ge -\sum_{t=2}^{T} \int d\mathbf{x}^{(0)} d\mathbf{x}^{(t)} q\left(\mathbf{x}^{(0)}, \mathbf{x}^{(t)}\right) D_{KL}\left(q\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}, \mathbf{x}^{(0)}\right) \middle| p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right)\right)$$

+ const

$$p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right) = \mathcal{N}\left(\mathbf{x}^{(t-1)}; f_{\mu}\left(\mathbf{x}^{(t)}, t\right), f_{\Sigma}\left(\mathbf{x}^{(t)}, t\right)\right)$$

$$L \ge -\sum_{t=2}^{T} \int d\mathbf{x}^{(0)} d\mathbf{x}^{(t)} q\left(\mathbf{x}^{(0)}, \mathbf{x}^{(t)}\right) D_{KL}\left(q\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}, \mathbf{x}^{(0)}\right) \middle| p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right)\right) + \text{const}$$

Gaussian

$$p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right) = \mathcal{N}\left(\mathbf{x}^{(t-1)}; f_{\mu}\left(\mathbf{x}^{(t)}, t\right), f_{\Sigma}\left(\mathbf{x}^{(t)}, t\right)\right)$$

Training

$$\underset{f_{\mu}\left(\mathbf{x}^{(t)},t\right),f_{\Sigma}\left(\mathbf{x}^{(t)},t\right)}{\operatorname{argmin}} \mathbb{E}\left[D_{KL}\left(q\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)},\mathbf{x}^{(0)}\right)\middle|\middle|p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right)\right)\right]$$

$$L \ge -\sum_{t=2}^{T} \int d\mathbf{x}^{(0)} d\mathbf{x}^{(t)} q\left(\mathbf{x}^{(0)}, \mathbf{x}^{(t)}\right) D_{KL}\left(q\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}, \mathbf{x}^{(0)}\right) \middle| p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right)\right) + \text{const}$$

$$p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right) = \mathcal{N}\left(\mathbf{x}^{(t-1)}; f_{\mu}\left(\mathbf{x}^{(t)}, t\right), f_{\Sigma}\left(\mathbf{x}^{(t)}, t\right)\right)$$

Training

$$\underset{f_{\mu}\left(\mathbf{x}^{(t)},t\right),f_{\Sigma}\left(\mathbf{x}^{(t)},t\right)}{\operatorname{argmin}} \mathbb{E}\left[D_{KL}\left(q\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)},\mathbf{x}^{(0)}\right)\middle|\left|p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right)\right)\right]\right]$$

Unsupervised Regression learning

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results
 - Algorithm
 - Deep convolutional network: Universal function approximator
 - Multiplying distributions: Inputation, denoising, computing posteriors
- Other projects: Training energy based models, Monte Carlo, deep learning theory

Use Deep Network as Function Approximator for Images

Use Deep Network as Function Approximator for Images

Use Deep Network as Function Approximator for Images

Use Deep Network as Function Approximator for Images

Training Data

Samples from Generative Adverserial [Goodfellow *et al*, 2014]

Jascha Sohl-Dickstein

Samples from Generative Adverserial [Goodfellow *et al*, 2014]

Samples from diffusion model

Samples from DRAW

[Gregor *et al*, 2015]

Jascha Sohl-Dickstein

Samples from Generative Adverserial [Goodfellow *et al*, 2014]

Samples from diffusion model

Training Data

Training Data

Sample from [Theis *et al*, 2012]

Training Data

Sample from [Theis *et al*, 2012]

Training Data

Sample from [Theis *et al*, 2012]

Sample from diffusion model

Training Data

Sample from [Theis *et al*, 2012]

Sample from diffusion model

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results
 - Algorithm
 - Deep convolutional network: Universal function approximator
 - Multiplying distributions: Inputation, denoising, computing posteriors
- Other projects: Training energy based models, Monte Carlo, deep learning theory

Interested in
$$\tilde{p}\left(\mathbf{x}^{(0)}\right) \propto p\left(\mathbf{x}^{(0)}\right) r\left(\mathbf{x}^{(0)}\right)$$

- Required to compute posterior distributions
 - Missing data (inpainting)
 - Corrupted data (denoising)

Interested in
$$\tilde{p}\left(\mathbf{x}^{(0)}\right) \propto p\left(\mathbf{x}^{(0)}\right) r\left(\mathbf{x}^{(0)}\right)$$

- Required to compute posterior distributions
 - Missing data (inpainting)
 - Corrupted data (denoising)
- Difficult and expensive using competing techniques
 - e.g. VAEs, GSNs, NADEs, GANs, RNVP, most graphical models

Interested in
$$\tilde{p}\left(\mathbf{x}^{(0)}\right) \propto p\left(\mathbf{x}^{(0)}\right) r\left(\mathbf{x}^{(0)}\right)$$

Interested in
$$\tilde{p}\left(\mathbf{x}^{(0)}\right) \propto p\left(\mathbf{x}^{(0)}\right) r\left(\mathbf{x}^{(0)}\right)$$

Interested in
$$\tilde{p}\left(\mathbf{x}^{(0)}\right) \propto p\left(\mathbf{x}^{(0)}\right) r\left(\mathbf{x}^{(0)}\right)$$

Acts as small perturbation to diffusion process

Interested in
$$\tilde{p}\left(\mathbf{x}^{(0)}\right) \propto p\left(\mathbf{x}^{(0)}\right) r\left(\mathbf{x}^{(0)}\right)$$

Acts as small perturbation to diffusion process

$$p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right) = \mathcal{N}\left(\mathbf{x}^{(t-1)}; f_{\mu}\left(\mathbf{x}^{(t)}, t\right), f_{\Sigma}\left(\mathbf{x}^{(t)}, t\right)\right)$$

$$\tilde{p}\left(\mathbf{x}^{(t-1)} \mid \mathbf{x}^{(t)}\right) \approx \mathcal{N}\left(x^{(t-1)}; \mathbf{f}_{\mu}\left(\mathbf{x}^{(t)}, t\right) + \mathbf{f}_{\Sigma}\left(\mathbf{x}^{(t)}, t\right) \frac{\partial \log r\left(\mathbf{x}^{(t-1)'}\right)}{\partial \mathbf{x}^{(t-1)'}} \bigg|_{\mathbf{x}^{(t-1)'} = f_{\mu}\left(\mathbf{x}^{(t)}, t\right)}, \mathbf{f}_{\Sigma}\left(\mathbf{x}^{(t)}, t\right)\right)$$

Jascha Sohl-Dickstein

Image Denoising by Sampling from Posterior

Holdout Data

Image Denoising by Sampling from Posterior

Holdout Data

Corrupted (SNR = 1)

Image Denoising by Sampling from Posterior

(SNR = 1)

Jascha Sohl-Dickstein

Image Inpainting by Sampling from Posterior

Image Inpainting by Sampling from Posterior

Inpainted image

True image

Image Inpainting by Sampling from Posterior

Inpainted image

True image

• Flexible: Diffusion process for any (smooth) distribution

- Flexible: Diffusion process for any (smooth) distribution
 - Binary or continuous state space

- Flexible: Diffusion process for any (smooth) distribution
 - Binary or continuous state space
- Tractable: Training, exact sampling, inference, evaluation

- Flexible: Diffusion process for any (smooth) distribution
 - Binary or continuous state space
- Tractable: Training, exact sampling, inference, evaluation
- Deep networks with thousands of layers (/ time steps)

- Flexible: Diffusion process for any (smooth) distribution
 - Binary or continuous state space
- Tractable: Training, exact sampling, inference, evaluation
- Deep networks with thousands of layers (/ time steps)
- Easy to multiply distributions (e.g. for posterior)

- Flexible: Diffusion process for any (smooth) distribution
 - Binary or continuous state space
- Tractable: Training, exact sampling, inference, evaluation
- Deep networks with thousands of layers (/ time steps)
- Easy to multiply distributions (e.g. for posterior)
- Bounds on entropy production

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results
- Other projects: Training energy based models,
 Monte Carlo, deep learning theory

Minimum Probability Flow Learning

 Estimate parameters in energy based models, by minimizing probability flow under master equation from stat. mech.

[PRL, 2011] [ICML, 2011]

Minimum Probability Flow Learning

More rapidly solves inverse Ising problem

First 60 seconds

First 800 seconds

First 25,000 seconds

[PRL, 2011] [ICML, 2011]

Hamiltonian Monte Carlo Without Detailed Balance

Describe HMC using operators on discrete state space

[ICML, 2014]

Hamiltonian Monte Carlo Without Detailed Balance

Improved mixing by violating detailed balance

[ICML, 2014]

Predict properties of deep networks using mean field theory

[NIPS, 2016] [ICLR, 2017 (under review)]

Thanks!

Collaborators

Eric Weiss

Niru Maheswaranathan

Surya Ganguli

Endless discussion

- The Ganguli Gang
- The Redwood Center for Theoretical Neuroscience
- Google Brain

Diffusion Probabilistic Model Applied to MNIST

Model	Log likelihood estimate*
Stacked CAE	121 ± 1.6 bits
DBN	138 ± 2 bits
Deep GSN	214 ± 1.1 bits
Diffusion	220 ± 1.9 bits
Adversarial net	225 ± 2 bits

Samples from diffusion model

Diffusion Probabilistic Models

^{*} via Parzen window code from [Goodfellow et al, 2014]

Continuous time formulation

- Continuous time formulation
- Perturbation around energy based model

- Continuous time formulation
- Perturbation around energy based model
- Binary data (e.g. spike trains)

Toy Binary Sequence Learning

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results
 - Algorithm
 - Deep convolutional network: Universal function approximator
 - Multiplying distributions: Inputation, denoising, computing posteriors

 Extremely flexible, parametric, function approximation

- Extremely flexible, parametric, function approximation
- Single layer: linear transformation, pointwise nonlinearity

- Extremely flexible, parametric, function approximation
- Single layer: linear transformation, pointwise nonlinearity

$$\mathbf{y}^l = \sigma\left(\mathbf{W}^l \mathbf{y}^{l-1}\right)$$

- Extremely flexible, parametric, function approximation
- Single layer: linear transformation, pointwise nonlinearity

$$\mathbf{y}^l = \sigma\left(\mathbf{W}^l \mathbf{y}^{l-1}\right)$$

- Extremely flexible, parametric, function approximation
- Single layer: linear transformation, pointwise nonlinearity

$$\mathbf{y}^{l} = \sigma \left(\mathbf{W}^{l} \mathbf{y}^{l-1} \right)$$

$$\sigma \left(u \right) \equiv \text{leaky ReLU}$$

$$= \begin{cases} u & u \geq 0 \\ 0.05u & u < 0 \end{cases}$$

- Extremely flexible, parametric, function approximation
- Single layer: linear transformation, pointwise nonlinearity

- Extremely flexible, parametric, function approximation
- Single layer: linear transformation, pointwise nonlinearity
- Deep network: stack single layers

- Extremely flexible, parametric, function approximation
- Single layer: linear transformation, pointwise nonlinearity
- Deep network: stack single layers

- Extremely flexible, parametric, function approximation
- Single layer: linear transformation, pointwise nonlinearity
- Deep network: stack single layers

$$\mathbf{y}^{L} = \sigma \left(\mathbf{W}^{L} \sigma \left(\mathbf{W}^{L-1} \cdots \sigma \left(\mathbf{W}^{1} \mathbf{y}^{0} \right) \right) \right)$$

Convolutional Neural Network

- Single convolutional layer:
 - Same linear transform for every pixel
 - Pointwise nonlinearity

Convolutional Neural Network

- Single convolutional layer:
 - Same linear transform for every pixel
 - Pointwise nonlinearity

Multiscale Convolution

Single multi-scale convolutional layer:

Deep Network Architecture for Diffusion

Deep Network Architecture for Diffusion

Setting Diffusion Rate

Erase constant fraction of stimulus variance each step

$$\beta_t = \frac{1}{T - t + 1}$$

• Can also train β_t

Theoretical Breakthroughs in Machine Learning

Optimization: Combining SGD and quasi-Newton optimization (SFO optimizer) [ICML 2014]

Theoretical Breakthroughs in Machine Learning

Optimization: Combining SGD and quasi-Newton optimization (SFO optimizer) [ICML 2014]

Theoretical Breakthroughs in Machine Learning

Sampling and evaluation: Hamiltonian Monte Carlo
without detailed balance [ICML 2014] and for log likelihood
evaluation [Tech Report 2012], fast sampling for natural image
models [NIPS 2012]

Theoretical Breakthroughs in Machine Learning

• Training energy-based models: Minimum Probability Flow learning [ICML 2011] [PRL 2011]

Theoretical Breakthroughs in Machine Learning

Model design: capturing dynamics with Lie groups
 [Under Revision at NECO], bilinear generative models [ICCV 2011]

Horizontal Translation

Theoretical Breakthroughs in Machine Learning

 Properties of deep networks: Characterization in function space

Online education data

Medical imaging data [SPIE 2009] [Med Phys 2014]

• Neuroscience electrophysiology data: [PLoS Comp Bio 2014] [Neuron 2013]

a) Stimulus frames

 Human ultrasonic echolocation: Blind assistive device [TBME 2015]

Planetary science: multispectral observations
 [Science 2004a] [Science 2004b]

Thanks!

Collaborators

- Craig Abbey
- Peter Battaglino
- Shaowen Bao
- Matthias Bethge
- Jack Culpepper
- Liberty Hamilton
- Chris Hillar
- Alex Huth
- Kilian Koepsell
- Urs Köster
- Niru Maheswaranathan
- Mayur Mudigonda
- Ben Poole
- Lucas Theis
- Jimmy Wang
- Eric Weiss

Mentors

- Surya Ganguli
- Bruno Olshausen
- Michael R.
 DeWeese
- James F. Bell III

. The Decker of Occasion

 The Redwood Center for Theoretical Neuroscience

Endless discussion

The Ganguli Gang

Eric Weiss

Niru Maheswaranathan

Surya Ganguli

Differences from Variational Autoencoders

- Can analytically evaluate KL divergence between steps in forward and reverse trajectories.
- Can multiply with other distributions, and compute posteriors
- Erases structure, rather than transforming it
- Thousands of layers or time steps, rather than only a small handful
- Connections to nonequilibrium statistical mechanics

Continuous Time

$$q\left(\mathbf{x}^{t}|\mathbf{x}^{0},\mathbf{x}^{t+dt}\right) = \mathcal{N}\left(\mathbf{x}^{t};\mathbf{x}^{t+dt} - \mathbf{x}^{t+dt}\frac{\exp\left(-\beta t\right)}{1 - \exp\left(-\beta t\right)}\beta dt - \frac{1}{2}\mathbf{x}^{t+dt}\beta dt + \frac{1}{2}\mathbf{x}^{0}\operatorname{csch}\left(\frac{\beta t}{2}\right)\beta dt,\beta dt\right)$$

$$p\left(\mathbf{x}^{t}|\mathbf{x}^{t+dt}\right) = \mathcal{N}\left(\mathbf{x}^{t};\mathbf{x}^{t+dt} - \mathbf{x}^{t+dt}\frac{\exp\left(-\beta t\right)}{1 - \exp\left(-\beta t\right)}\beta dt - \frac{1}{2}\mathbf{x}^{t+dt}\beta dt + \frac{1}{2}f_{0}\left(\mathbf{x}^{t+dt},t\right)\operatorname{csch}\left(\frac{\beta t}{2}\right)\beta dt,\beta dt\right)$$

$$D_{KL}\left(q\left(\mathbf{x}^{t}|\mathbf{x}^{0},\mathbf{x}^{t+dt}\right)||p\left(\mathbf{x}^{t}|\mathbf{x}^{t+dt}\right)\right) = \frac{1}{2}\frac{\Sigma_{q}}{\Sigma_{p}} + \frac{1}{2}\log\frac{\Sigma_{p}}{\Sigma_{q}} + \frac{1}{2}\frac{(\mu_{p} - \mu_{q})^{2}}{\Sigma_{p}} - \frac{1}{2}$$
$$= \frac{1}{8}\left(f_{0}\left(\mathbf{x}^{t+dt},t\right) - \mathbf{x}^{0}\right)^{2}\operatorname{csch}^{2}\left(\frac{\beta t}{2}\right)\beta dt$$

Denoising autoencoder penalty

Related Methods

- Generative stochastic networks
- Variational autoencoders
- (Deep) (Recurrent) Neural Autoregressive Distribution Estimators

- Variational Bayesian(e.g. variational autoencoder)
 - Posterior over intermediate layers has analytic form — > KL divergence has analytic form
 - Can multiply distributions
 - Generative model is small perturbation around inference model — makes learning easier
 - Models have thousands of layers (or time steps)