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capture the statistics of anatomy in mammograms.  Furthermore, higher-order statistics, not captured in a power 
spectrum, are likely to aid visual tasks relative to a Gaussian assumption.  Burgess’ study [4] shows that contrast 
thresholds for mammographic backgrounds are significantly lower than a Gaussian distribution matched in power 
spectrum, and have a less steeply sloped CD diagram.  However, little is known about the statistical moments of breast 
images beyond second order.  The purpose of this work is to investigate higher-order statistical properties of breast 
images, specifically the kurtosis of linear filters applied at random locations in an image.   

The approach we take is based on methods from research in natural scene statistics, where investigators in the fields of 
visual neuroscience and computer vision are increasingly turning to higher order statistics of images to motivate models 
of the human visual system.  In the first study, we evaluate the kurtosis of octave-bandwidth Gabor filters, with response 
properties very similar to linear models of receptive fields in the early visual system.  We consider projection 
mammograms as well as coronal breast CT (bCT) images to give a sense of the differences in going from a 2D to a 3D 
imaging system.  We also derive filters from these medical images using an approach pioneered by Olshausen and Field 
[11-13], who found filter-banks resembling visual receptive fields emerged in basis sets that enforced sparse (i.e. high-
kurtosis) responses. The finding that receptive field responses have excess kurtosis suggests that these derived filters are 
more appropriate for describing the statistics of anatomy in projection mammography and bCT images [14]. 

Figure 1. Examples of breast image ROIs.  Four image ROIs taken from mammograms (A), coronal breast CT images 
(B), and segmentations of the CT images (C) are shown.  The patches are rendered approximately at their physical size.

A.  Projection Mammograms 

B.  Coronal Breast CT 

C.  Segmented Breast CT 

Figure 1. Examples of breast image ROIs.  Four image ROIs taken from mammograms (A), coronal breast CT images 
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• Microscopic view 

• Brownian motion

© Rutger Saly

• Position updates are small 
Gaussians

• Both forwards and backwards in 
time
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t = 0 t = T
2 t = T

q
�
x(0···T )

�

p
�
x(0···T )

�

Figure 1: The proposed modeling framework trained on 2-d swiss roll data. The top row shows time slices from
the forward trajectory q

�
x(0···T )

�
. The data distribution (left) undergoes Gaussian di↵usion, which gradually

transforms it into an isotropic unit norm Gaussian (right). The bottom row shows the corresponding time slices
from the trained reverse trajectory p

�
x(0···T )

�
. An isotropic unit norm Gaussian (right) undergoes a Gaussian

di↵usion process with learned mean and covariance functions, and is gradually transformed back into the data
distribution (left).

Figure 2: Binary sequence inpainting: a heartbeat binary sequence consisting of a pulse every fifth time bin was
generated. The red bins in each sample were fixed, while the middle bins (in black) were unknown. The figures
show a trajectory through the reverse process given an initial distribution drawn from an independent binomial
at each time bin (left). After a just a few steps through the trajectory, the samples settle to the true sequence
(right).
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DRAW: A Recurrent Neural Network For Image Generation

Table 3. Experimental Hyper-Parameters.
Task #glimpses LSTM #h #z Read Size Write Size
100 ⇥ 100 MNIST Classification 8 256 - 12 ⇥ 12 -
MNIST Model 64 256 100 2 ⇥ 2 5 ⇥ 5

SVHN Model 32 800 100 12 ⇥ 12 12 ⇥ 12

CIFAR Model 64 400 200 5 ⇥ 5 5 ⇥ 5

Figure 10. SVHN Generation Sequences. The red rectangle in-
dicates the attention patch. Notice how the network draws the dig-
its one at a time, and how it moves and scales the writing patch to
produce numbers with different slopes and sizes.
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Figure 11. Training and validation cost on SVHN. The valida-
tion cost is consistently lower because the validation set patches
were extracted from the image centre (rather than from random
locations, as in the training set). The network was never able to
overfit on the training data.

Figure 12. Generated CIFAR images. The rightmost column
shows the nearest training examples to the column beside it.

5. Conclusion
This paper introduced the Deep Recurrent Attentive Writer
(DRAW) neural network architecture, and demonstrated its
ability to generate highly realistic natural images such as
photographs of house numbers, as well as improving on the
best known results for binarized MNIST generation. We
also established that the two-dimensional differentiable at-
tention mechanism embedded in DRAW is beneficial not
only to image generation, but also to cluttered image clas-
sification.
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Model MNIST TFD
DBN [3] 138± 2 1909± 66

Stacked CAE [3] 121± 1.6 2110± 50

Deep GSN [6] 214± 1.1 1890± 29

Adversarial nets 225± 2 2057± 26

Table 1: Parzen window-based log-likelihood estimates. The reported numbers on MNIST are the mean log-
likelihood of samples on test set, with the standard error of the mean computed across examples. On TFD, we
computed the standard error across folds of the dataset, with a different � chosen using the validation set of
each fold. On TFD, � was cross validated on each fold and mean log-likelihood on each fold were computed.
For MNIST we compare against other models of the real-valued (rather than binary) version of dataset.

of the Gaussians was obtained by cross validation on the validation set. This procedure was intro-
duced in Breuleux et al. [8] and used for various generative models for which the exact likelihood
is not tractable [25, 3, 5]. Results are reported in Table 1. This method of estimating the likelihood
has somewhat high variance and does not perform well in high dimensional spaces but it is the best
method available to our knowledge. Advances in generative models that can sample but not estimate
likelihood directly motivate further research into how to evaluate such models.

In Figures 2 and 3 we show samples drawn from the generator net after training. While we make no
claim that these samples are better than samples generated by existing methods, we believe that these
samples are at least competitive with the better generative models in the literature and highlight the
potential of the adversarial framework.

a) b)

c) d)

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)
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the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
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Outline
• Motivation: The promise of deep unsupervised learning 

• Physical intuition: Diffusion processes and time reversal 

• Diffusion probabilistic model: Derivation and experimental results 

• Algorithm 

• Deep convolutional network: Universal function approximator 

• Multiplying distributions: Inputation, denoising, 
computing posteriors

• Other projects: Training energy based models, Monte Carlo, 
deep learning theory
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Multiplying Distributions is 
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• Required to compute posterior distributions 

• Missing data (inpainting) 

• Corrupted data (denoising) 

• Difficult and expensive using competing techniques 

• e.g. VAEs, GSNs, NADEs, GANs, RNVP, most graphical 
models
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Image Inpainting by 
Sampling from Posterior
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• Training data [Lazebnik et al, 2005]
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Flexible and tractable method 
for deep unsupervised learning

• Flexible: Diffusion process for any (smooth) distribution

• Binary or continuous state space

• Tractable: Training, exact sampling, inference, evaluation

• Deep networks with thousands of layers (/ time steps)

• Easy to multiply distributions (e.g. for posterior)

• Bounds on entropy production
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Minimum Probability Flow Learning
• Estimate parameters in energy based models, by 

minimizing probability flow under master equation 
from stat. mech.
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[PRL, 2011] 
[ICML, 2011]
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Minimum Probability Flow Learning
• More rapidly solves inverse Ising problem

Jascha Sohl-Dickstein Diffusion Probabilistic Models

[PRL, 2011] 
[ICML, 2011]
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Hamiltonian Monte Carlo 
Without Detailed Balance

• Describe HMC using operators on discrete state 
space

[ICML, 2014]

⇣ I⇣

⇣
F⇣

⇣

L⇣

L⇣

⇣

L�1⇣

L�1F⇣

LF⇣

F⇣



Jascha Sohl-Dickstein Diffusion Probabilistic Models

Hamiltonian Monte Carlo 
Without Detailed Balance

• Improved mixing by violating detailed balance

[ICML, 2014]
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Predict properties of deep networks 
using mean field theory

[NIPS, 2016] 
[ICLR, 2017 (under review)]

Under review as a conference paper at ICLR 2017

of the weights and biases implies that the covariance between different pre-activations in the same
layer will be given by, E[z

l

i;az

l

j;b] = q

l

ab

�

ij

. The covariance, q

l

ab

, will be given by the recurrence
relation,

q
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ab

= �
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b

(4)

where u1 =
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q
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,

are Gaussian approximations to the pre-activations in the preceding layer with the correct covariance
matrix. Moreover c

l

ab

is the correlation between the two inputs after l layers.
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Figure 1: Mean field criticality. (a) The mean field phase diagram showing the boundary between
ordered and chaotic phases as a function of �

2
w

and �

2
b

. (b) The residual |q⇤ � q

l

aa

| as a function
of depth on a log-scale with �

2
b

= 0.05 and �

2
w

from 0.01 (red) to 1.7 (purple). Clear exponential
behavior is observed. (c) The residual |c⇤ � c

l

ab

| as a function of depth on a log-scale. Again, the
exponential behavior is clear. The same color scheme is used here as in (b).

Examining eq. 4 it is clear that c

⇤
= 1 is a fixed point of the recurrence relation. To determine

whether or not the c

⇤
= 1 is an attractive fixed point the quantity,

�1 =

@c

l

ab

@c

l�1
ab

= �

2
w

Z
Dz

⇥
�

0 �p
q

⇤
z

�⇤2 (5)

is introduced. Poole et al. (2016) note that the c

⇤
= 1 fixed point is stable if �1 < 1 and is unstable

otherwise. Thus, �1 = 1 represents a critical line separating an ordered phase (in which c

⇤
= 1

and all inputs end up asymptotically correlated) and a chaotic phase (in which c

⇤
< 1 and all inputs

end up asymptotically decorrelated.) For the case of � = tanh, the phase diagram in fig. 1 (a) is
observed.

3 ASYMPTOTIC EXPANSIONS AND DEPTH SCALES

Our first contribution is to demonstrate the existence of two depth-scales that arise naturally within
the framework of mean field neural networks. Motivating the existence of these depth-scales, we
iterate eq. 3 and 4 until convergence for many values of �

2
w

between 0.1 and 3.0 and with �

2
b

= 0.05

starting with q

0
aa

= q

0
bb

= 0.8 and c

0
ab

= 0.6. We see, in fig. 1 (b) and (c), that the manner in
which both q

l

aa

approaches q

⇤ and c

l

ab

approaches c

⇤ is exponential over many orders of magnitude.
We therefore anticipate that asymptotically |ql

aa

� q

⇤| ⇠ e

�l/⇠q and |cl

ab

� c

⇤| ⇠ e

�l/⇠c for suffi-
ciently large l. Here, ⇠

q

and ⇠

c

define depth-scales over which information may propagate about the
magnitude of a single input and the correlation between two inputs respectively.

We will presently prove that q

l

aa

and c

l

ab

are asymptotically exponential. In both cases we will use
the same fundamental strategy wherein we expand one of the recurrence relations (either eq. 3 or
eq. 4) about its fixed point to get an approximate “asymptotic” recurrence relation. We find that
this asymptotic recurrence relation in turn implies exponential decay towards the fixed point over a
depth-scale, ⇠

x

.

We first analyze eq. 3 and identify a depth-scale at which information about a single input may
propagate. Let q

l

aa

= q

⇤
+ ✏

l. By construction so long as lim

l!1 q

l

aa

= q

⇤ exists it follows that
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consistent gradients across similar samples from a training set ought to be especially important for
determining whether or not a given neural network architecture can be trained. To establish this
depth-scale first note (see Appendix 7.8) that the covariance between gradients of two different
inputs, x

i;1 and x

i;2, will be proportional to (r
W

l
ij

E

a

) · (r
W

l
ij

E

b

) ⇠ E[�

l
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i;b] = q̃
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ab

where E

a

is
the loss evaluated on x

i;a and �

i;a = @E

a

/@z

l

i;a are appropriately defined errors.

It can be shown (see Appendix 7.9) that q̃

l

ab

features the recurrence relation,
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where u1 and u2 are defined similarly as for the forward pass. Expanding asymptotically it is clear
that to zeroth order in ✏

l, q̃

l

ab

will have an exponential solution with q̃

l

ab

= q̃

L

ab

e

�(L�l)/⇠c with ⇠

c

as
defined in the forward pass.

5 EXPERIMENTAL RESULTS

Taken together, the results of this paper lead us to the following hypothesis: a necessary condition
for a random network to be trained is that information about the inputs should be able to propa-
gate forward through the network, and information about the gradients should be able to propagate
backwards through the network. The preceding analysis shows that networks will have this property
precisely when the network depth, L, is not much larger than the depth-scale ⇠

c

. This criterion is
data independent and therefore offers a “universal” constraint on the hyperparameters that depends
on network architecture alone. We now explore this relationship between depth of signal propagation
and network trainability empirically.
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Figure 5: Mean field depth scales control trainable hyperparameters. The training accuracy for neu-
ral networks as a function of their depth and initial weight variance, �2

w

from a high accuracy (red) to
low accuracy (black). In (a) we plot the training accuracy after 200 training steps on MNIST using
SGD. Here overlayed in grey dashed lines are different multiples of the depth scale for correlated
signal propagation, n⇠

c

. We plot the accuracy in (b) after 2000 training steps on CIFAR10 using
SGD, in (c) after 14000 training steps on MNIST using SGD, and in (d) after 300 training steps on
MNIST using RMSPROP. Here we overlay in white dashed lines 6⇠

c

.

To investigate this prediction, we consider random networks of depth 10  L  300 and 1 
�

2
w

 4 with �

2
b

= 0.05. We train these networks using Stochastic Gradient Descent (SGD) and
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Diffusion Probabilistic Model 
Applied to MNIST

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Samples from 
diffusion model

Model Log likelihood 
estimate*

Stacked CAE 121 ± 1.6 bits

DBN 138 ± 2 bits

Deep GSN 214 ± 1.1 bits

Diffusion 220 ± 1.9 bits

Adversarial net 225 ± 2 bits

* via Parzen window code from [Goodfellow et al, 2014]
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• Continuous time formulation
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Future Work

• Continuous time formulation

• Perturbation around energy based model
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Future Work

• Continuous time formulation

• Perturbation around energy based model

• Binary data (e.g. spike trains)
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Toy Binary Sequence 
Learning

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Deep Unsupervised Learning using Nonequilibrium Thermodynamics

t = 0 t = T

2

t = T

p
�
x

(0···T )

�

Figure 2. Binary sequence learning via binomial diffusion. A binomial diffusion model was trained on binary ‘heartbeat’ data, where a
pulse occurs every 5th bin. Generated samples (left) are identical to the training data. The sampling procedure consists of initialization
at independent binomial noise (right), which is then transformed into the data distribution by a binomial diffusion process, with trained
bit flip probabilities. Each row contains an independent sample. For ease of visualization, all samples have been shifted so that a pulse
occurs in the first column. In the raw sequence data, the first pulse is uniformly distributed over the first five bins.

(a) (b)

(c) (d)

Figure 3. The proposed framework trained on the CIFAR-10 (Krizhevsky & Hinton, 2009) dataset. (a) Example holdout data (similar
to training data). (b) Holdout data corrupted with Gaussian noise of variance 1 (SNR = 1). (c) Denoised images, generated by sampling
from the posterior distribution over denoised images conditioned on the images in (b). (d) Samples generated by the diffusion model.

The forward trajectory, corresponding to starting at the data
distribution and performing T steps of diffusion, is thus

q
⇣
x

(0···T )

⌘
= q

⇣
x

(0)

⌘ TY

t=1

q
⇣
x

(t)|x(t�1)

⌘
(3)

For the experiments shown below, q
�
x

(t)|x(t�1)

�
corre-

sponds to either Gaussian diffusion into a Gaussian distri-
bution with identity-covariance, or binomial diffusion into
an independent binomial distribution. Table App.1 gives
the diffusion kernels for both Gaussian and binomial distri-
butions.



Outline
• Motivation: The promise of deep unsupervised learning 

• Physical intuition: Diffusion processes and time reversal 

• Diffusion probabilistic model: Derivation and 
experimental results 

• Algorithm 

• Deep convolutional network: Universal function 
approximator

• Multiplying distributions: Inputation, denoising, 
computing posteriors
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Deep Networks
• Extremely flexible, parametric, 

function approximation
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• Single layer: linear transformation, 
pointwise nonlinearity

Jascha Sohl-Dickstein Diffusion Probabilistic Models



Deep Networks
• Extremely flexible, parametric, 

function approximation

• Single layer: linear transformation, 
pointwise nonlinearity

Jascha Sohl-Dickstein Diffusion Probabilistic Models

yl = �
�
Wlyl�1

�



Deep Networks
• Extremely flexible, parametric, 

function approximation

• Single layer: linear transformation, 
pointwise nonlinearity

Jascha Sohl-Dickstein Diffusion Probabilistic Models

yl = �
�
Wlyl�1

�
yl

yl�1

Wl



Deep Networks
• Extremely flexible, parametric, 

function approximation

• Single layer: linear transformation, 
pointwise nonlinearity
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Deep Networks
• Extremely flexible, parametric, 

function approximation

• Single layer: linear transformation, 
pointwise nonlinearity
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Deep Networks
• Extremely flexible, parametric, 

function approximation

• Single layer: linear transformation, 
pointwise nonlinearity

• Deep network: stack single layers
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Deep Networks
• Extremely flexible, parametric, 

function approximation

• Single layer: linear transformation, 
pointwise nonlinearity

• Deep network: stack single layers
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Deep Networks
• Extremely flexible, parametric, 

function approximation

• Single layer: linear transformation, 
pointwise nonlinearity

• Deep network: stack single layers
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Convolutional Neural 
Network

• Single convolutional layer: 

• Same linear transform for every pixel 

• Pointwise nonlinearity
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Convolutional Neural 
Network

• Single convolutional layer: 

• Same linear transform for every pixel 

• Pointwise nonlinearity
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Multiscale Convolution
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Sum
yl
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• Single multi-scale convolutional layer:
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Deep Network Architecture 
for Diffusion

Jascha Sohl-Dickstein Diffusion Probabilistic Models

Input

Dense Multi-scale
convolution

Convolution
1x1 kernel

Temporal
coefficients

Temporal
coefficients

Dense Multi-scale
convolution

Mean
image

Covariance
image

Convolution
1x1 kernel

fµ
⇣
x

(t), t
⌘

f⌃
⇣
x

(t), t
⌘

x

(t)

Black 
box 



Deep Network Architecture 
for Diffusion
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Setting Diffusion Rate

• Erase constant fraction of stimulus variance each step 

• Can also train 

Jascha Sohl-Dickstein Diffusion Probabilistic Models
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Theoretical Breakthroughs in 
Machine Learning

• Optimization: Combining SGD and quasi-Newton 
optimization (SFO optimizer) [ICML 2014]
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Theoretical Breakthroughs in 
Machine Learning

• Optimization: Combining SGD and quasi-Newton 
optimization (SFO optimizer) [ICML 2014]
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experiments in talk



Theoretical Breakthroughs in 
Machine Learning

• Sampling and evaluation: Hamiltonian Monte Carlo 
without detailed balance [ICML 2014] and for log likelihood 
evaluation [Tech Report 2012], fast sampling for natural image 
models [NIPS 2012]
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Theoretical Breakthroughs in 
Machine Learning

• Training energy-based models: Minimum Probability 
Flow learning [ICML 2011] [PRL 2011]
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Theoretical Breakthroughs in 
Machine Learning

• Model design: capturing dynamics with Lie groups  
[Under Revision at NECO] , bilinear generative models [ICCV 2011]

Jascha Sohl-Dickstein Diffusion Probabilistic Models

(a)

Horizontal Translation

(b)

Rotation

(c)

(d)

Figure 3: The learned transformation operators that corresponds to horizontal trans-

lation (a) and rotation (b). Each 11 ⇥ 11 block corresponds to one column of A and

the block’s position in the figure corresponds to its pixel location in the original image

patch. Each block therefore shows how intensity at one pixel location contributes to

the instantaneous change in intensity at all other pixel locations. Note that the blocks

correspond to spatial derivatives in the direction of motion. Panels (c) and (d) show the

translation and rotation operators, respectively, being applied to an image patch.
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�
Layer 2:
feature grouping

Layer 1:
image features

x

n

�

 

⇥

c

d

Figure 1. The bilinear model is formulated in terms of two layers
of representation. The first layer represents the image data in terms
of a set of features �. The second layer factorizes the first layer
representation in terms of feature groups ( ) represented by latent
variables d, and their relative activations (⇥) represented by latent
variables c.

where x 2 RL is a vector representing the image data, such
as pixels, or PCA coefficients. � 2 RL⇥M is a matrix of
features, and n 2 RL is Gaussian noise with variance �

2,
n ⇠ N (�a, �

2
I). The second layer is a factored represen-

tation of a:
a = ⇥ c �  d , (3)

with ⇥ 2 RM⇥J ,  2 RM⇥K , and � denoting an
element-wise product. The prior distributions on the latent
variables c and d impose a functional asymmetry between
what is learned by ⇥ and  . The intention is for  to
learn how groups of features co-activate (their presence or
absence), while⇥ learns the relative amplitudes of features
after the part modeled by d has been factored out. The d

variables should represent patterns of co-activation that are
invariant to local perturbations of shape in the image, while
the variations in shape are represented by the c variables.

The c variables are encouraged to explain variability by
the use of an isotropic Gaussian prior, which is rotationally
invariant and non-sparse:

c ⇠ N (0, I) . (4)

The matrix is encouraged to learn meaningful, frequently
occurring patterns in the image feature activations by se-
lecting a prior distribution for the d variables that prefers
directions aligned with the coordinate axes. The following
choices are explored:

d ⇠ E(I) (5)
d ⇠ L(I) (6)

log d ⇠ N (0, I) (7)

log d ⇠ N (0,⌦⌦

T
) (8)

where E(I) and L(I) denote factorial exponential and
Laplace distributions with rate parameter one.

This two-layer hierarchical structure can also be viewed
as a factorization of the parameter tensor � from Equation 1

into the product of three matrices,

�jkl =

X

m

�lm mj ⇥mk . (9)

This factorization reduces the number of model parameters
from JKL to M(J + K + L), where L is the number of
values in the image data, J is the number of content dimen-
sions, K is the number of style dimensions, and M is the
number of factors coupling each l, j, and k. This technique
has recently been used successfully by [22, 31] to find re-
duced dimensionality parameterizations that are reasonably
matched to structure in the data being modeled.

Finally, note that if  = I and ⇥ = I, this model takes
the form of a Gaussian scale mixture [36].

3. Model estimation and evaluation

Since c and d are latent, we use Expectation Maximiza-
tion (EM) to fit model parameters ⇤ ⌘ {�, ,⇥,⌦}. In
the E-step we update samples from the posterior distribu-
tion computed at the previous time step Q

(t)
(c,d|x) using

a Hamiltonian Monte Carlo sampler, described in the next
section. In the M-step, maximization is performed using
L-BFGS [2].

3.1. Sampling from the posterior

P (c,d|x,⇤) is sampled using a variation on a Langevin
dynamics sampler with partial momentum refreshment. The
underlying technique is introduced in [12], and is clearly
presented in [24] (Sections 5.2 and 5.3). The momentum
refreshment rate � is set such that half the momentum power
is replaced per unit simulation time. Thus, the update to the
momentum p, applied after every leapfrog step, is given by

p

0
= �

p
1� � p +

p
� r, (10)

� = 1� exp (✏ log (1/2)) , (11)

where p

0 is the new momentum, r ⇠ N (0, I), and ✏ is the
length of each leapfrog simulation step.

Rather than sampling from the posterior repeatedly for
each item, an entire batch of data is loaded into memory, and
one particle for each data item is evolved simultaneously.
This avoids a significant number of burn-in steps that would
be required if the particles were initialized with randomized
positions and momenta on each iteration of E-M. Instead,
the sampling algorithm is initialized once, at the beginning
of learning, by loading a large set of data {xb}b=1..B , allo-
cating space for one particle (represented by a position and
momentum) per data item, and initializing the position and
momentum by drawing from their respective priors. The po-
sition consists of the c and d together. The sampling time-
step ✏ and the number of sampling iterations ⌧ between M
steps are chosen at the beginning of learning and held fixed.



Theoretical Breakthroughs in 
Machine Learning

• Properties of deep networks: Characterization in 
function space
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2d slice through 
function space  

for 2-layer network



Understanding Real Data
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Understanding Real Data
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• Medical imaging data [SPIE 2009] [Med Phys 2014]

 

 

capture the statistics of anatomy in mammograms.  Furthermore, higher-order statistics, not captured in a power 
spectrum, are likely to aid visual tasks relative to a Gaussian assumption.  Burgess’ study [4] shows that contrast 
thresholds for mammographic backgrounds are significantly lower than a Gaussian distribution matched in power 
spectrum, and have a less steeply sloped CD diagram.  However, little is known about the statistical moments of breast 
images beyond second order.  The purpose of this work is to investigate higher-order statistical properties of breast 
images, specifically the kurtosis of linear filters applied at random locations in an image.   

The approach we take is based on methods from research in natural scene statistics, where investigators in the fields of 
visual neuroscience and computer vision are increasingly turning to higher order statistics of images to motivate models 
of the human visual system.  In the first study, we evaluate the kurtosis of octave-bandwidth Gabor filters, with response 
properties very similar to linear models of receptive fields in the early visual system.  We consider projection 
mammograms as well as coronal breast CT (bCT) images to give a sense of the differences in going from a 2D to a 3D 
imaging system.  We also derive filters from these medical images using an approach pioneered by Olshausen and Field 
[11-13], who found filter-banks resembling visual receptive fields emerged in basis sets that enforced sparse (i.e. high-
kurtosis) responses. The finding that receptive field responses have excess kurtosis suggests that these derived filters are 
more appropriate for describing the statistics of anatomy in projection mammography and bCT images [14]. 

Figure 1. Examples of breast image ROIs.  Four image ROIs taken from mammograms (A), coronal breast CT images 
(B), and segmentations of the CT images (C) are shown.  The patches are rendered approximately at their physical size.

A.  Projection Mammograms 

B.  Coronal Breast CT 

C.  Segmented Breast CT 

Figure 1. Examples of breast image ROIs.  Four image ROIs taken from mammograms (A), coronal breast CT images 
(B), and segmentations of the CT images (C) are shown.  The patches are rendered approximately at their physical size.

A.  Projection Mammograms 

B.  Coronal Breast CT 

C.  Segmented Breast CT 

Proc. of SPIE Vol. 7263  726317-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/23/2015 Terms of Use: http://spiedl.org/terms



Understanding Real Data
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• Neuroscience electrophysiology data: [PLoS Comp Bio 2014] 
[Neuron 2013]
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Figure Legends

b) Example data, 2s of data in 20ms bins

c) Pairwise Correlations, 20ms bins
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Figure 1. Laminar population recordings in response to natural movies. (a) Example of one
of the natural movie stimuli, depicting ducks on a lawn, presented full-field at 150 frames per second.
(b) Example data from 22 cells (session B4), binned in 20ms windows, 2s of data. Columns of this
matrix form the training data for our algorithm. For the spatiotemporal version of the model, several
adjacent columns are concatenated. (c) Pairwise correlations in the raw data, and noise correlations
computed from 60 repetitions of a 30s stimulus, binned at 20ms. Both show small, positive correlations.
Shu✏ing spikes for each of the cells shows that correlations expected due to shared firing rate
modulations time-locked to the stimulus are much smaller.
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Understanding Real Data
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• Human ultrasonic echolocation: Blind assistive device 
[TBME 2015]

PC#



Understanding Real Data
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• Planetary science: multispectral observations  
[Science 2004a] [Science 2004b]
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Differences from 
Variational Autoencoders

• Can analytically evaluate KL divergence between 
steps in forward and reverse trajectories. 

• Can multiply with other distributions, and compute 
posteriors 

• Erases structure, rather than transforming it 

• Thousands of layers or time steps, rather than only a 
small handful 

• Connections to nonequilibrium statistical mechanics

Jascha Sohl-Dickstein Diffusion Probabilistic Models



Continuous Time
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Related Methods

• Generative stochastic networks 

• Variational autoencoders 

• (Deep) (Recurrent) Neural Autoregressive 
Distribution Estimators

Jascha Sohl-Dickstein Diffusion Probabilistic Models



• Variational Bayesian(e.g. variational autoencoder) 

• Posterior over intermediate layers has analytic 
form — > KL divergence has analytic form 

• Can multiply distributions 

• Generative model is small perturbation around 
inference model — makes learning easier 

• Models have thousands of layers (or time steps)

Jascha Sohl-Dickstein Diffusion Probabilistic Models


